Jacobi-Matrix und ihre Determinante für $$$\left\{x = 2 u \cos{\left(5 v \right)}, y = 2 \sin{\left(5 v \right)}\right\}$$$
Ihre Eingabe
Berechnen Sie die Jacobi-Matrix von $$$\left\{x = 2 u \cos{\left(5 v \right)}, y = 2 \sin{\left(5 v \right)}\right\}$$$.
Lösung
Die Jacobi-Matrix wird wie folgt definiert: $$$J{\left(x,y \right)}\left(u, v\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right].$$$
In unserem Fall gilt $$$J{\left(x,y \right)}\left(u, v\right) = \left[\begin{array}{cc}\frac{\partial}{\partial u} \left(2 u \cos{\left(5 v \right)}\right) & \frac{\partial}{\partial v} \left(2 u \cos{\left(5 v \right)}\right)\\\frac{\partial}{\partial u} \left(2 \sin{\left(5 v \right)}\right) & \frac{\partial}{\partial v} \left(2 \sin{\left(5 v \right)}\right)\end{array}\right].$$$
Bestimmen Sie die Ableitungen (für die Schritte siehe Ableitungsrechner): $$$J{\left(x,y \right)}\left(u, v\right) = \left[\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right].$$$
Die Jacobi-Determinante ist die Determinante der Jacobi-Matrix: $$$\left|\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right| = 20 \cos^{2}{\left(5 v \right)}$$$ (für die Schritte siehe determinant calculator).
Antwort
Die Jacobi-Matrix ist $$$\left[\begin{array}{cc}2 \cos{\left(5 v \right)} & - 10 u \sin{\left(5 v \right)}\\0 & 10 \cos{\left(5 v \right)}\end{array}\right]$$$A.
Die Jacobi-Determinante ist $$$20 \cos^{2}{\left(5 v \right)}$$$A.