Jacobi-Matrix und ihre Determinante für $$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$

Der Rechner berechnet die Jacobi-Matrix (und ihre Determinante) der Menge der Funktionen (bzw. der Transformation) $$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$ und zeigt die Rechenschritte.
Komma-getrennt.
Für die automatische Erkennung leer lassen oder Variablen wie x,y angeben (kommagetrennt).

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Berechnen Sie die Jacobi-Matrix von $$$\left\{x = 3 e^{- 4 r} \sin{\left(3 \theta \right)}, y = e^{4 r} \cos{\left(3 \theta \right)}\right\}$$$.

Lösung

Die Jacobi-Matrix wird wie folgt definiert: $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right].$$$

In unserem Fall gilt $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial}{\partial r} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(3 e^{- 4 r} \sin{\left(3 \theta \right)}\right)\\\frac{\partial}{\partial r} \left(e^{4 r} \cos{\left(3 \theta \right)}\right) & \frac{\partial}{\partial \theta} \left(e^{4 r} \cos{\left(3 \theta \right)}\right)\end{array}\right].$$$

Bestimmen Sie die Ableitungen (für die Schritte siehe Ableitungsrechner): $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right].$$$

Die Jacobi-Determinante ist die Determinante der Jacobi-Matrix: $$$\left|\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right| = - 36 \cos{\left(6 \theta \right)}$$$ (für die Schritte siehe determinant calculator).

Antwort

Die Jacobi-Matrix ist $$$\left[\begin{array}{cc}- 12 e^{- 4 r} \sin{\left(3 \theta \right)} & 9 e^{- 4 r} \cos{\left(3 \theta \right)}\\4 e^{4 r} \cos{\left(3 \theta \right)} & - 3 e^{4 r} \sin{\left(3 \theta \right)}\end{array}\right]$$$A.

Die Jacobi-Determinante ist $$$- 36 \cos{\left(6 \theta \right)}$$$A.


Please try a new game Rotatly