eMathHelp Mathe-Löser – Kostenloser Schritt-für-Schritt-Rechner

Löse Mathematikaufgaben Schritt für Schritt

Dieser erweiterte Rechner löst Aufgaben aus den Bereichen Algebra, Geometrie, Analysis, Wahrscheinlichkeitsrechnung/Statistik, linearer Algebra, linearer Programmierung und diskreter Mathematik, mit angezeigten Lösungsschritten.
Haben Sie den benötigten Rechner nicht gefunden? Anfordern
Permanenter Link: Integralrechner
Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int \frac{3}{x^{2} + 2}\, dx$$$.

Lösung

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=3$$$ und $$$f{\left(x \right)} = \frac{1}{x^{2} + 2}$$$ an:

$${\color{red}{\int{\frac{3}{x^{2} + 2} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x^{2} + 2} d x}\right)}}$$

Sei $$$u=\frac{\sqrt{2}}{2} x$$$.

Dann $$$du=\left(\frac{\sqrt{2}}{2} x\right)^{\prime }dx = \frac{\sqrt{2}}{2} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$dx = \sqrt{2} du$$$.

Das Integral lässt sich umschreiben als

$$3 {\color{red}{\int{\frac{1}{x^{2} + 2} d x}}} = 3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{\sqrt{2}}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$ an:

$$3 {\color{red}{\int{\frac{\sqrt{2}}{2 \left(u^{2} + 1\right)} d u}}} = 3 {\color{red}{\left(\frac{\sqrt{2} \int{\frac{1}{u^{2} + 1} d u}}{2}\right)}}$$

Das Integral von $$$\frac{1}{u^{2} + 1}$$$ ist $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{3 \sqrt{2} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{2} = \frac{3 \sqrt{2} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{2}$$

Zur Erinnerung: $$$u=\frac{\sqrt{2}}{2} x$$$:

$$\frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{u}} \right)}}{2} = \frac{3 \sqrt{2} \operatorname{atan}{\left({\color{red}{\frac{\sqrt{2}}{2} x}} \right)}}{2}$$

Daher,

$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{\frac{3}{x^{2} + 2} d x} = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}+C$$

Antwort

$$$\int \frac{3}{x^{2} + 2}\, dx = \frac{3 \sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} x}{2} \right)}}{2} + C$$$A


Please try a new game Rotatly