Integral of $$$x^{2} \sec{\left(x^{3} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int x^{2} \sec{\left(x^{3} \right)}\, dx$$$.
Solution
Let $$$u=x^{3}$$$.
Then $$$du=\left(x^{3}\right)^{\prime }dx = 3 x^{2} dx$$$ (steps can be seen »), and we have that $$$x^{2} dx = \frac{du}{3}$$$.
The integral can be rewritten as
$${\color{red}{\int{x^{2} \sec{\left(x^{3} \right)} d x}}} = {\color{red}{\int{\frac{\sec{\left(u \right)}}{3} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(u \right)} = \sec{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\sec{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\sec{\left(u \right)} d u}}{3}\right)}}$$
Rewrite the secant as $$$\sec\left( u \right)=\frac{1}{\cos\left( u \right)}$$$:
$$\frac{{\color{red}{\int{\sec{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{3}$$
Rewrite the cosine in terms of the sine using the formula $$$\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right)$$$ and then rewrite the sine using the double angle formula $$$\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3}$$
Multiply the numerator and denominator by $$$\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3}$$
Let $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$.
Then $$$dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv$$$.
Therefore,
$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{3} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{3}$$
The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{3} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{3}$$
Recall that $$$v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{3} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{3}$$
Recall that $$$u=x^{3}$$$:
$$\frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{3} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{x^{3}}}}{2} \right)}}\right| \right)}}{3}$$
Therefore,
$$\int{x^{2} \sec{\left(x^{3} \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x^{3}}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{3}$$
Add the constant of integration:
$$\int{x^{2} \sec{\left(x^{3} \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x^{3}}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{3}+C$$
Answer
$$$\int x^{2} \sec{\left(x^{3} \right)}\, dx = \frac{\ln\left(\left|{\tan{\left(\frac{x^{3}}{2} + \frac{\pi}{4} \right)}}\right|\right)}{3} + C$$$A