Integral of $$$\sec^{3}{\left(\theta \right)}$$$

The calculator will find the integral/antiderivative of $$$\sec^{3}{\left(\theta \right)}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sec^{3}{\left(\theta \right)}\, d\theta$$$.

Solution

For the integral $$$\int{\sec^{3}{\left(\theta \right)} d \theta}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Let $$$\operatorname{u}=\sec{\left(\theta \right)}$$$ and $$$\operatorname{dv}=\sec^{2}{\left(\theta \right)} d\theta$$$.

Then $$$\operatorname{du}=\left(\sec{\left(\theta \right)}\right)^{\prime }d\theta=\tan{\left(\theta \right)} \sec{\left(\theta \right)} d\theta$$$ (steps can be seen ») and $$$\operatorname{v}=\int{\sec^{2}{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)}$$$ (steps can be seen »).

So,

$$\int{\sec^{3}{\left(\theta \right)} d \theta}=\sec{\left(\theta \right)} \cdot \tan{\left(\theta \right)}-\int{\tan{\left(\theta \right)} \cdot \tan{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\tan^{2}{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}$$

Apply the formula $$$\tan^{2}{\left(\theta \right)} = \sec^{2}{\left(\theta \right)} - 1$$$:

$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\tan^{2}{\left(\theta \right)} \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{2}{\left(\theta \right)} - 1\right) \sec{\left(\theta \right)} d \theta}$$

Expand:

$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{2}{\left(\theta \right)} - 1\right) \sec{\left(\theta \right)} d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{3}{\left(\theta \right)} - \sec{\left(\theta \right)}\right)d \theta}$$

The integral of a difference is the difference of integrals:

$$\tan{\left(\theta \right)} \sec{\left(\theta \right)} - \int{\left(\sec^{3}{\left(\theta \right)} - \sec{\left(\theta \right)}\right)d \theta}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} + \int{\sec{\left(\theta \right)} d \theta} - \int{\sec^{3}{\left(\theta \right)} d \theta}$$

Thus, we get the following simple linear equation with respect to the integral:

$${\color{red}{\int{\sec^{3}{\left(\theta \right)} d \theta}}}=\tan{\left(\theta \right)} \sec{\left(\theta \right)} + \int{\sec{\left(\theta \right)} d \theta} - {\color{red}{\int{\sec^{3}{\left(\theta \right)} d \theta}}}$$

Solving it, we obtain that

$$\int{\sec^{3}{\left(\theta \right)} d \theta}=\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{\int{\sec{\left(\theta \right)} d \theta}}{2}$$

Rewrite the secant as $$$\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$$$:

$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\sec{\left(\theta \right)} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}}}{2}$$

Rewrite the cosine in terms of the sine using the formula $$$\cos\left(\theta\right)=\sin\left(\theta + \frac{\pi}{2}\right)$$$ and then rewrite the sine using the double angle formula $$$\sin\left(\theta\right)=2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$$$:

$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(\theta \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2}$$

Multiply the numerator and denominator by $$$\sec^2\left(\frac{\theta}{2} + \frac{\pi}{4} \right)$$$:

$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2}$$

Let $$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$.

Then $$$du=\left(\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}\right)^{\prime }d\theta = \frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2} d\theta$$$ (steps can be seen »), and we have that $$$\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)} d\theta = 2 du$$$.

The integral becomes

$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}} d \theta}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Recall that $$$u=\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}$$

Therefore,

$$\int{\sec^{3}{\left(\theta \right)} d \theta} = \frac{\ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}$$

Add the constant of integration:

$$\int{\sec^{3}{\left(\theta \right)} d \theta} = \frac{\ln{\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}+C$$

Answer

$$$\int \sec^{3}{\left(\theta \right)}\, d\theta = \left(\frac{\ln\left(\left|{\tan{\left(\frac{\theta}{2} + \frac{\pi}{4} \right)}}\right|\right)}{2} + \frac{\tan{\left(\theta \right)} \sec{\left(\theta \right)}}{2}\right) + C$$$A


Please try a new game Rotatly