Integral of $$$e^{x} \cos{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{x} \cos{\left(x \right)}\, dx$$$.
Solution
For the integral $$$\int{e^{x} \cos{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\cos{\left(x \right)}$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(\cos{\left(x \right)}\right)^{\prime }dx=- \sin{\left(x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
Thus,
$${\color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}={\color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}={\color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = e^{x} \sin{\left(x \right)}$$$:
$$e^{x} \cos{\left(x \right)} - {\color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}} = e^{x} \cos{\left(x \right)} - {\color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}$$
For the integral $$$\int{e^{x} \sin{\left(x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\sin{\left(x \right)}$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(\sin{\left(x \right)}\right)^{\prime }dx=\cos{\left(x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
The integral can be rewritten as
$$e^{x} \cos{\left(x \right)} + {\color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}=e^{x} \cos{\left(x \right)} + {\color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}=e^{x} \cos{\left(x \right)} + {\color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}$$
We've arrived to an integral that we already saw.
Thus, we've obtained the following simple equation with respect to the integral:
$$\int{e^{x} \cos{\left(x \right)} d x} = e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}$$
Solving it, we get that
$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$
Therefore,
$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}}{2}$$
Simplify:
$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}$$
Add the constant of integration:
$$\int{e^{x} \cos{\left(x \right)} d x} = \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2}+C$$
Answer
$$$\int e^{x} \cos{\left(x \right)}\, dx = \frac{\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}}{2} + C$$$A