Integral of $$$e^{- \frac{y}{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- \frac{y}{2}}\, dy$$$.
Solution
Let $$$u=- \frac{y}{2}$$$.
Then $$$du=\left(- \frac{y}{2}\right)^{\prime }dy = - \frac{dy}{2}$$$ (steps can be seen »), and we have that $$$dy = - 2 du$$$.
The integral becomes
$${\color{red}{\int{e^{- \frac{y}{2}} d y}}} = {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-2$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- 2 e^{u}\right)d u}}} = {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- 2 {\color{red}{\int{e^{u} d u}}} = - 2 {\color{red}{e^{u}}}$$
Recall that $$$u=- \frac{y}{2}$$$:
$$- 2 e^{{\color{red}{u}}} = - 2 e^{{\color{red}{\left(- \frac{y}{2}\right)}}}$$
Therefore,
$$\int{e^{- \frac{y}{2}} d y} = - 2 e^{- \frac{y}{2}}$$
Add the constant of integration:
$$\int{e^{- \frac{y}{2}} d y} = - 2 e^{- \frac{y}{2}}+C$$
Answer
$$$\int e^{- \frac{y}{2}}\, dy = - 2 e^{- \frac{y}{2}} + C$$$A