Integral of $$$\frac{1}{\sqrt{1 - x}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{\sqrt{1 - x}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{\sqrt{1 - x}}\, dx$$$.

Solution

Let $$$u=1 - x$$$.

Then $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.

Thus,

$${\color{red}{\int{\frac{1}{\sqrt{1 - x}} d x}}} = {\color{red}{\int{\left(- \frac{1}{\sqrt{u}}\right)d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = \frac{1}{\sqrt{u}}$$$:

$${\color{red}{\int{\left(- \frac{1}{\sqrt{u}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{u}} d u}\right)}}$$

Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{1}{2}$$$:

$$- {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}=- {\color{red}{\int{u^{- \frac{1}{2}} d u}}}=- {\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}=- {\color{red}{\left(2 u^{\frac{1}{2}}\right)}}=- {\color{red}{\left(2 \sqrt{u}\right)}}$$

Recall that $$$u=1 - x$$$:

$$- 2 \sqrt{{\color{red}{u}}} = - 2 \sqrt{{\color{red}{\left(1 - x\right)}}}$$

Therefore,

$$\int{\frac{1}{\sqrt{1 - x}} d x} = - 2 \sqrt{1 - x}$$

Add the constant of integration:

$$\int{\frac{1}{\sqrt{1 - x}} d x} = - 2 \sqrt{1 - x}+C$$

Answer

$$$\int \frac{1}{\sqrt{1 - x}}\, dx = - 2 \sqrt{1 - x} + C$$$A


Please try a new game Rotatly