Integral of $$$- 2 x - 3$$$

The calculator will find the integral/antiderivative of $$$- 2 x - 3$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- 2 x - 3\right)\, dx$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- 2 x - 3\right)d x}}} = {\color{red}{\left(- \int{3 d x} - \int{2 x d x}\right)}}$$

Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3$$$:

$$- \int{2 x d x} - {\color{red}{\int{3 d x}}} = - \int{2 x d x} - {\color{red}{\left(3 x\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = x$$$:

$$- 3 x - {\color{red}{\int{2 x d x}}} = - 3 x - {\color{red}{\left(2 \int{x d x}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:

$$- 3 x - 2 {\color{red}{\int{x d x}}}=- 3 x - 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- 3 x - 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Therefore,

$$\int{\left(- 2 x - 3\right)d x} = - x^{2} - 3 x$$

Simplify:

$$\int{\left(- 2 x - 3\right)d x} = x \left(- x - 3\right)$$

Add the constant of integration:

$$\int{\left(- 2 x - 3\right)d x} = x \left(- x - 3\right)+C$$

Answer

$$$\int \left(- 2 x - 3\right)\, dx = x \left(- x - 3\right) + C$$$A


Please try a new game Rotatly