Integral of $$$\frac{1}{x^{29}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{29}}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-29$$$:
$${\color{red}{\int{\frac{1}{x^{29}} d x}}}={\color{red}{\int{x^{-29} d x}}}={\color{red}{\frac{x^{-29 + 1}}{-29 + 1}}}={\color{red}{\left(- \frac{x^{-28}}{28}\right)}}={\color{red}{\left(- \frac{1}{28 x^{28}}\right)}}$$
Therefore,
$$\int{\frac{1}{x^{29}} d x} = - \frac{1}{28 x^{28}}$$
Add the constant of integration:
$$\int{\frac{1}{x^{29}} d x} = - \frac{1}{28 x^{28}}+C$$
Answer
$$$\int \frac{1}{x^{29}}\, dx = - \frac{1}{28 x^{28}} + C$$$A