Integral of $$$\sqrt{x - 1}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sqrt{x - 1}\, dx$$$.
Solution
Let $$$u=x - 1$$$.
Then $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Therefore,
$${\color{red}{\int{\sqrt{x - 1} d x}}} = {\color{red}{\int{\sqrt{u} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=\frac{1}{2}$$$:
$${\color{red}{\int{\sqrt{u} d u}}}={\color{red}{\int{u^{\frac{1}{2}} d u}}}={\color{red}{\frac{u^{\frac{1}{2} + 1}}{\frac{1}{2} + 1}}}={\color{red}{\left(\frac{2 u^{\frac{3}{2}}}{3}\right)}}$$
Recall that $$$u=x - 1$$$:
$$\frac{2 {\color{red}{u}}^{\frac{3}{2}}}{3} = \frac{2 {\color{red}{\left(x - 1\right)}}^{\frac{3}{2}}}{3}$$
Therefore,
$$\int{\sqrt{x - 1} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3}$$
Add the constant of integration:
$$\int{\sqrt{x - 1} d x} = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3}+C$$
Answer
$$$\int \sqrt{x - 1}\, dx = \frac{2 \left(x - 1\right)^{\frac{3}{2}}}{3} + C$$$A