Integral of $$$\sin{\left(\nu \right)} \cos{\left(\mu \right)}$$$ with respect to $$$\mu$$$

The calculator will find the integral/antiderivative of $$$\sin{\left(\nu \right)} \cos{\left(\mu \right)}$$$ with respect to $$$\mu$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \sin{\left(\nu \right)} \cos{\left(\mu \right)}\, d\mu$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(\mu \right)}\, d\mu = c \int f{\left(\mu \right)}\, d\mu$$$ with $$$c=\sin{\left(\nu \right)}$$$ and $$$f{\left(\mu \right)} = \cos{\left(\mu \right)}$$$:

$${\color{red}{\int{\sin{\left(\nu \right)} \cos{\left(\mu \right)} d \mu}}} = {\color{red}{\sin{\left(\nu \right)} \int{\cos{\left(\mu \right)} d \mu}}}$$

The integral of the cosine is $$$\int{\cos{\left(\mu \right)} d \mu} = \sin{\left(\mu \right)}$$$:

$$\sin{\left(\nu \right)} {\color{red}{\int{\cos{\left(\mu \right)} d \mu}}} = \sin{\left(\nu \right)} {\color{red}{\sin{\left(\mu \right)}}}$$

Therefore,

$$\int{\sin{\left(\nu \right)} \cos{\left(\mu \right)} d \mu} = \sin{\left(\mu \right)} \sin{\left(\nu \right)}$$

Add the constant of integration:

$$\int{\sin{\left(\nu \right)} \cos{\left(\mu \right)} d \mu} = \sin{\left(\mu \right)} \sin{\left(\nu \right)}+C$$

Answer

$$$\int \sin{\left(\nu \right)} \cos{\left(\mu \right)}\, d\mu = \sin{\left(\mu \right)} \sin{\left(\nu \right)} + C$$$A


Please try a new game Rotatly