Integral of $$$\sin{\left(3 x^{2} \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(3 x^{2} \right)}\, dx$$$.
Solution
Let $$$u=\sqrt{3} x$$$.
Then $$$du=\left(\sqrt{3} x\right)^{\prime }dx = \sqrt{3} dx$$$ (steps can be seen »), and we have that $$$dx = \frac{\sqrt{3} du}{3}$$$.
The integral can be rewritten as
$${\color{red}{\int{\sin{\left(3 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{3} \sin{\left(u^{2} \right)}}{3} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{\sqrt{3}}{3}$$$ and $$$f{\left(u \right)} = \sin{\left(u^{2} \right)}$$$:
$${\color{red}{\int{\frac{\sqrt{3} \sin{\left(u^{2} \right)}}{3} d u}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\sin{\left(u^{2} \right)} d u}}{3}\right)}}$$
This integral (Fresnel Sine Integral) does not have a closed form:
$$\frac{\sqrt{3} {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}}{3} = \frac{\sqrt{3} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{3}$$
Recall that $$$u=\sqrt{3} x$$$:
$$\frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{6} = \frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\sqrt{3} x}}}{\sqrt{\pi}}\right)}{6}$$
Therefore,
$$\int{\sin{\left(3 x^{2} \right)} d x} = \frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6} x}{\sqrt{\pi}}\right)}{6}$$
Add the constant of integration:
$$\int{\sin{\left(3 x^{2} \right)} d x} = \frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6} x}{\sqrt{\pi}}\right)}{6}+C$$
Answer
$$$\int \sin{\left(3 x^{2} \right)}\, dx = \frac{\sqrt{6} \sqrt{\pi} S\left(\frac{\sqrt{6} x}{\sqrt{\pi}}\right)}{6} + C$$$A