Integral of $$$\frac{e^{- x}}{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{e^{- x}}{2}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = e^{- x}$$$:
$${\color{red}{\int{\frac{e^{- x}}{2} d x}}} = {\color{red}{\left(\frac{\int{e^{- x} d x}}{2}\right)}}$$
Let $$$u=- x$$$.
Then $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
Therefore,
$$\frac{{\color{red}{\int{e^{- x} d x}}}}{2} = \frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{2}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{{\color{red}{\int{\left(- e^{u}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{e^{u} d u}\right)}}}{2}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$
Recall that $$$u=- x$$$:
$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- x\right)}}}}{2}$$
Therefore,
$$\int{\frac{e^{- x}}{2} d x} = - \frac{e^{- x}}{2}$$
Add the constant of integration:
$$\int{\frac{e^{- x}}{2} d x} = - \frac{e^{- x}}{2}+C$$
Answer
$$$\int \frac{e^{- x}}{2}\, dx = - \frac{e^{- x}}{2} + C$$$A