Integral of $$$e^{\frac{x}{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{\frac{x}{5}}\, dx$$$.
Solution
Let $$$u=\frac{x}{5}$$$.
Then $$$du=\left(\frac{x}{5}\right)^{\prime }dx = \frac{dx}{5}$$$ (steps can be seen »), and we have that $$$dx = 5 du$$$.
Thus,
$${\color{red}{\int{e^{\frac{x}{5}} d x}}} = {\color{red}{\int{5 e^{u} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=5$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{5 e^{u} d u}}} = {\color{red}{\left(5 \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$$5 {\color{red}{\int{e^{u} d u}}} = 5 {\color{red}{e^{u}}}$$
Recall that $$$u=\frac{x}{5}$$$:
$$5 e^{{\color{red}{u}}} = 5 e^{{\color{red}{\left(\frac{x}{5}\right)}}}$$
Therefore,
$$\int{e^{\frac{x}{5}} d x} = 5 e^{\frac{x}{5}}$$
Add the constant of integration:
$$\int{e^{\frac{x}{5}} d x} = 5 e^{\frac{x}{5}}+C$$
Answer
$$$\int e^{\frac{x}{5}}\, dx = 5 e^{\frac{x}{5}} + C$$$A