Integral of $$$e^{- n^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{- n^{2}}\, dn$$$.
Solution
This integral (Error Function) does not have a closed form:
$${\color{red}{\int{e^{- n^{2}} d n}}} = {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(n \right)}}{2}\right)}}$$
Therefore,
$$\int{e^{- n^{2}} d n} = \frac{\sqrt{\pi} \operatorname{erf}{\left(n \right)}}{2}$$
Add the constant of integration:
$$\int{e^{- n^{2}} d n} = \frac{\sqrt{\pi} \operatorname{erf}{\left(n \right)}}{2}+C$$
Answer
$$$\int e^{- n^{2}}\, dn = \frac{\sqrt{\pi} \operatorname{erf}{\left(n \right)}}{2} + C$$$A
Please try a new game Rotatly