Integral of $$$- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}$$$:
$${\color{red}{\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}\right)}}$$
Let $$$u=\sin{\left(x \right)}$$$.
Then $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (steps can be seen »), and we have that $$$\cos{\left(x \right)} dx = du$$$.
The integral can be rewritten as
$$- {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}} d x}}} = - {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$$- {\color{red}{\int{\frac{1}{u^{2}} d u}}}=- {\color{red}{\int{u^{-2} d u}}}=- {\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}=- {\color{red}{\left(- u^{-1}\right)}}=- {\color{red}{\left(- \frac{1}{u}\right)}}$$
Recall that $$$u=\sin{\left(x \right)}$$$:
$${\color{red}{u}}^{-1} = {\color{red}{\sin{\left(x \right)}}}^{-1}$$
Therefore,
$$\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x} = \frac{1}{\sin{\left(x \right)}}$$
Add the constant of integration:
$$\int{\left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)d x} = \frac{1}{\sin{\left(x \right)}}+C$$
Answer
$$$\int \left(- \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)}}\right)\, dx = \frac{1}{\sin{\left(x \right)}} + C$$$A