Integral of $$$7 x^{3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 7 x^{3}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=7$$$ and $$$f{\left(x \right)} = x^{3}$$$:
$${\color{red}{\int{7 x^{3} d x}}} = {\color{red}{\left(7 \int{x^{3} d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=3$$$:
$$7 {\color{red}{\int{x^{3} d x}}}=7 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=7 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Therefore,
$$\int{7 x^{3} d x} = \frac{7 x^{4}}{4}$$
Add the constant of integration:
$$\int{7 x^{3} d x} = \frac{7 x^{4}}{4}+C$$
Answer
$$$\int 7 x^{3}\, dx = \frac{7 x^{4}}{4} + C$$$A