Integral of $$$4 \sin^{2}{\left(x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 4 \sin^{2}{\left(x \right)}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=4$$$ and $$$f{\left(x \right)} = \sin^{2}{\left(x \right)}$$$:
$${\color{red}{\int{4 \sin^{2}{\left(x \right)} d x}}} = {\color{red}{\left(4 \int{\sin^{2}{\left(x \right)} d x}\right)}}$$
Apply the power reducing formula $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ with $$$\alpha=x$$$:
$$4 {\color{red}{\int{\sin^{2}{\left(x \right)} d x}}} = 4 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = 1 - \cos{\left(2 x \right)}$$$:
$$4 {\color{red}{\int{\left(\frac{1}{2} - \frac{\cos{\left(2 x \right)}}{2}\right)d x}}} = 4 {\color{red}{\left(\frac{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}{2}\right)}}$$
Integrate term by term:
$$2 {\color{red}{\int{\left(1 - \cos{\left(2 x \right)}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} - \int{\cos{\left(2 x \right)} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=1$$$:
$$- 2 \int{\cos{\left(2 x \right)} d x} + 2 {\color{red}{\int{1 d x}}} = - 2 \int{\cos{\left(2 x \right)} d x} + 2 {\color{red}{x}}$$
Let $$$u=2 x$$$.
Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.
So,
$$2 x - 2 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 2 x - 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$2 x - 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 2 x - 2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
The integral of the cosine is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$2 x - {\color{red}{\int{\cos{\left(u \right)} d u}}} = 2 x - {\color{red}{\sin{\left(u \right)}}}$$
Recall that $$$u=2 x$$$:
$$2 x - \sin{\left({\color{red}{u}} \right)} = 2 x - \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
Therefore,
$$\int{4 \sin^{2}{\left(x \right)} d x} = 2 x - \sin{\left(2 x \right)}$$
Add the constant of integration:
$$\int{4 \sin^{2}{\left(x \right)} d x} = 2 x - \sin{\left(2 x \right)}+C$$
Answer
$$$\int 4 \sin^{2}{\left(x \right)}\, dx = \left(2 x - \sin{\left(2 x \right)}\right) + C$$$A