Integral of $$$\frac{48 t^{2}}{e^{5}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{48 t^{2}}{e^{5}}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{48}{e^{5}}$$$ and $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}{\int{\frac{48 t^{2}}{e^{5}} d t}}} = {\color{red}{\left(\frac{48 \int{t^{2} d t}}{e^{5}}\right)}}$$
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$\frac{48 {\color{red}{\int{t^{2} d t}}}}{e^{5}}=\frac{48 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}}{e^{5}}=\frac{48 {\color{red}{\left(\frac{t^{3}}{3}\right)}}}{e^{5}}$$
Therefore,
$$\int{\frac{48 t^{2}}{e^{5}} d t} = \frac{16 t^{3}}{e^{5}}$$
Add the constant of integration:
$$\int{\frac{48 t^{2}}{e^{5}} d t} = \frac{16 t^{3}}{e^{5}}+C$$
Answer
$$$\int \frac{48 t^{2}}{e^{5}}\, dt = \frac{16 t^{3}}{e^{5}} + C$$$A