Integral of $$$\frac{3}{t^{10}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{3}{t^{10}}\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=3$$$ and $$$f{\left(t \right)} = \frac{1}{t^{10}}$$$:
$${\color{red}{\int{\frac{3}{t^{10}} d t}}} = {\color{red}{\left(3 \int{\frac{1}{t^{10}} d t}\right)}}$$
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-10$$$:
$$3 {\color{red}{\int{\frac{1}{t^{10}} d t}}}=3 {\color{red}{\int{t^{-10} d t}}}=3 {\color{red}{\frac{t^{-10 + 1}}{-10 + 1}}}=3 {\color{red}{\left(- \frac{t^{-9}}{9}\right)}}=3 {\color{red}{\left(- \frac{1}{9 t^{9}}\right)}}$$
Therefore,
$$\int{\frac{3}{t^{10}} d t} = - \frac{1}{3 t^{9}}$$
Add the constant of integration:
$$\int{\frac{3}{t^{10}} d t} = - \frac{1}{3 t^{9}}+C$$
Answer
$$$\int \frac{3}{t^{10}}\, dt = - \frac{1}{3 t^{9}} + C$$$A