Integral of $$$- 21 y^{58} - 126$$$

The calculator will find the integral/antiderivative of $$$- 21 y^{58} - 126$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- 21 y^{58} - 126\right)\, dy$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(- 21 y^{58} - 126\right)d y}}} = {\color{red}{\left(- \int{126 d y} - \int{21 y^{58} d y}\right)}}$$

Apply the constant rule $$$\int c\, dy = c y$$$ with $$$c=126$$$:

$$- \int{21 y^{58} d y} - {\color{red}{\int{126 d y}}} = - \int{21 y^{58} d y} - {\color{red}{\left(126 y\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=21$$$ and $$$f{\left(y \right)} = y^{58}$$$:

$$- 126 y - {\color{red}{\int{21 y^{58} d y}}} = - 126 y - {\color{red}{\left(21 \int{y^{58} d y}\right)}}$$

Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=58$$$:

$$- 126 y - 21 {\color{red}{\int{y^{58} d y}}}=- 126 y - 21 {\color{red}{\frac{y^{1 + 58}}{1 + 58}}}=- 126 y - 21 {\color{red}{\left(\frac{y^{59}}{59}\right)}}$$

Therefore,

$$\int{\left(- 21 y^{58} - 126\right)d y} = - \frac{21 y^{59}}{59} - 126 y$$

Simplify:

$$\int{\left(- 21 y^{58} - 126\right)d y} = \frac{21 y \left(- y^{58} - 354\right)}{59}$$

Add the constant of integration:

$$\int{\left(- 21 y^{58} - 126\right)d y} = \frac{21 y \left(- y^{58} - 354\right)}{59}+C$$

Answer

$$$\int \left(- 21 y^{58} - 126\right)\, dy = \frac{21 y \left(- y^{58} - 354\right)}{59} + C$$$A


Please try a new game Rotatly