Integral of $$$10^{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int 10^{x}\, dx$$$.
Solution
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=10$$$:
$${\color{red}{\int{10^{x} d x}}} = {\color{red}{\frac{10^{x}}{\ln{\left(10 \right)}}}}$$
Therefore,
$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}$$
Add the constant of integration:
$$\int{10^{x} d x} = \frac{10^{x}}{\ln{\left(10 \right)}}+C$$
Answer
$$$\int 10^{x}\, dx = \frac{10^{x}}{\ln\left(10\right)} + C$$$A
Please try a new game Rotatly