Integral of $$$\frac{1}{6 x^{7}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{6 x^{7}}\, dx$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(x \right)} = \frac{1}{x^{7}}$$$:
$${\color{red}{\int{\frac{1}{6 x^{7}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{7}} d x}}{6}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-7$$$:
$$\frac{{\color{red}{\int{\frac{1}{x^{7}} d x}}}}{6}=\frac{{\color{red}{\int{x^{-7} d x}}}}{6}=\frac{{\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{6}=\frac{{\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{6}=\frac{{\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{6}$$
Therefore,
$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}$$
Add the constant of integration:
$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}+C$$
Answer
$$$\int \frac{1}{6 x^{7}}\, dx = - \frac{1}{36 x^{6}} + C$$$A