Integral of $$$\frac{1}{6 x^{7}}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{6 x^{7}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{6 x^{7}}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(x \right)} = \frac{1}{x^{7}}$$$:

$${\color{red}{\int{\frac{1}{6 x^{7}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x^{7}} d x}}{6}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-7$$$:

$$\frac{{\color{red}{\int{\frac{1}{x^{7}} d x}}}}{6}=\frac{{\color{red}{\int{x^{-7} d x}}}}{6}=\frac{{\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{6}=\frac{{\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{6}=\frac{{\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{6}$$

Therefore,

$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}$$

Add the constant of integration:

$$\int{\frac{1}{6 x^{7}} d x} = - \frac{1}{36 x^{6}}+C$$

Answer

$$$\int \frac{1}{6 x^{7}}\, dx = - \frac{1}{36 x^{6}} + C$$$A


Please try a new game Rotatly