Integral of $$$\frac{1}{x^{7}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{7}}\, dx$$$.
Solution
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-7$$$:
$${\color{red}{\int{\frac{1}{x^{7}} d x}}}={\color{red}{\int{x^{-7} d x}}}={\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}={\color{red}{\left(- \frac{x^{-6}}{6}\right)}}={\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}$$
Therefore,
$$\int{\frac{1}{x^{7}} d x} = - \frac{1}{6 x^{6}}$$
Add the constant of integration:
$$\int{\frac{1}{x^{7}} d x} = - \frac{1}{6 x^{6}}+C$$
Answer
$$$\int \frac{1}{x^{7}}\, dx = - \frac{1}{6 x^{6}} + C$$$A