Integral of $$$\frac{1}{k^{2}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{k^{2}}\, dk$$$.
Solution
Apply the power rule $$$\int k^{n}\, dk = \frac{k^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{k^{2}} d k}}}={\color{red}{\int{k^{-2} d k}}}={\color{red}{\frac{k^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- k^{-1}\right)}}={\color{red}{\left(- \frac{1}{k}\right)}}$$
Therefore,
$$\int{\frac{1}{k^{2}} d k} = - \frac{1}{k}$$
Add the constant of integration:
$$\int{\frac{1}{k^{2}} d k} = - \frac{1}{k}+C$$
Answer
$$$\int \frac{1}{k^{2}}\, dk = - \frac{1}{k} + C$$$A
Please try a new game Rotatly