Integral of $$$\frac{1}{x^{2} - 3}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{x^{2} - 3}\, dx$$$.
Solution
Perform partial fraction decomposition (steps can be seen »):
$${\color{red}{\int{\frac{1}{x^{2} - 3} d x}}} = {\color{red}{\int{\left(- \frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} + \frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(- \frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} + \frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \int{\frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{3}}{6}$$$ and $$$f{\left(x \right)} = \frac{1}{x + \sqrt{3}}$$$:
$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - {\color{red}{\int{\frac{\sqrt{3}}{6 \left(x + \sqrt{3}\right)} d x}}} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{x + \sqrt{3}} d x}}{6}\right)}}$$
Let $$$u=x + \sqrt{3}$$$.
Then $$$du=\left(x + \sqrt{3}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Thus,
$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{x + \sqrt{3}} d x}}}}{6} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6} = \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} - \frac{\sqrt{3} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$
Recall that $$$u=x + \sqrt{3}$$$:
$$- \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} + \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x} = - \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{\left(x + \sqrt{3}\right)}}}\right| \right)}}{6} + \int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{3}}{6}$$$ and $$$f{\left(x \right)} = \frac{1}{x - \sqrt{3}}$$$:
$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + {\color{red}{\int{\frac{\sqrt{3}}{6 \left(x - \sqrt{3}\right)} d x}}} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{x - \sqrt{3}} d x}}{6}\right)}}$$
Let $$$u=x - \sqrt{3}$$$.
Then $$$du=\left(x - \sqrt{3}\right)^{\prime }dx = 1 dx$$$ (steps can be seen »), and we have that $$$dx = du$$$.
Thus,
$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{x - \sqrt{3}} d x}}}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\int{\frac{1}{u} d u}}}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{6}$$
Recall that $$$u=x - \sqrt{3}$$$:
$$- \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{6} = - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6} + \frac{\sqrt{3} \ln{\left(\left|{{\color{red}{\left(x - \sqrt{3}\right)}}}\right| \right)}}{6}$$
Therefore,
$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \ln{\left(\left|{x - \sqrt{3}}\right| \right)}}{6} - \frac{\sqrt{3} \ln{\left(\left|{x + \sqrt{3}}\right| \right)}}{6}$$
Simplify:
$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \left(\ln{\left(\left|{x - \sqrt{3}}\right| \right)} - \ln{\left(\left|{x + \sqrt{3}}\right| \right)}\right)}{6}$$
Add the constant of integration:
$$\int{\frac{1}{x^{2} - 3} d x} = \frac{\sqrt{3} \left(\ln{\left(\left|{x - \sqrt{3}}\right| \right)} - \ln{\left(\left|{x + \sqrt{3}}\right| \right)}\right)}{6}+C$$
Answer
$$$\int \frac{1}{x^{2} - 3}\, dx = \frac{\sqrt{3} \left(\ln\left(\left|{x - \sqrt{3}}\right|\right) - \ln\left(\left|{x + \sqrt{3}}\right|\right)\right)}{6} + C$$$A