Integral of $$$- 2 t^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 2 t^{2}\right)\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=-2$$$ and $$$f{\left(t \right)} = t^{2}$$$:
$${\color{red}{\int{\left(- 2 t^{2}\right)d t}}} = {\color{red}{\left(- 2 \int{t^{2} d t}\right)}}$$
Apply the power rule $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- 2 {\color{red}{\int{t^{2} d t}}}=- 2 {\color{red}{\frac{t^{1 + 2}}{1 + 2}}}=- 2 {\color{red}{\left(\frac{t^{3}}{3}\right)}}$$
Therefore,
$$\int{\left(- 2 t^{2}\right)d t} = - \frac{2 t^{3}}{3}$$
Add the constant of integration:
$$\int{\left(- 2 t^{2}\right)d t} = - \frac{2 t^{3}}{3}+C$$
Answer
$$$\int \left(- 2 t^{2}\right)\, dt = - \frac{2 t^{3}}{3} + C$$$A