Integral of $$$-3 - \frac{1}{x}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(-3 - \frac{1}{x}\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(-3 - \frac{1}{x}\right)d x}}} = {\color{red}{\left(- \int{3 d x} - \int{\frac{1}{x} d x}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=3$$$:
$$- \int{\frac{1}{x} d x} - {\color{red}{\int{3 d x}}} = - \int{\frac{1}{x} d x} - {\color{red}{\left(3 x\right)}}$$
The integral of $$$\frac{1}{x}$$$ is $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$- 3 x - {\color{red}{\int{\frac{1}{x} d x}}} = - 3 x - {\color{red}{\ln{\left(\left|{x}\right| \right)}}}$$
Therefore,
$$\int{\left(-3 - \frac{1}{x}\right)d x} = - 3 x - \ln{\left(\left|{x}\right| \right)}$$
Add the constant of integration:
$$\int{\left(-3 - \frac{1}{x}\right)d x} = - 3 x - \ln{\left(\left|{x}\right| \right)}+C$$
Answer
$$$\int \left(-3 - \frac{1}{x}\right)\, dx = \left(- 3 x - \ln\left(\left|{x}\right|\right)\right) + C$$$A