Integral of $$$\frac{1}{e^{x} - 1}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{e^{x} - 1}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{1}{e^{x} - 1}\, dx$$$.

Solution

Let $$$u=e^{x}$$$.

Then $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (steps can be seen »), and we have that $$$e^{x} dx = du$$$.

The integral becomes

$${\color{red}{\int{\frac{1}{e^{x} - 1} d x}}} = {\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}}$$

Perform partial fraction decomposition (steps can be seen »):

$${\color{red}{\int{\frac{1}{u \left(u - 1\right)} d u}}} = {\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}}$$

Integrate term by term:

$${\color{red}{\int{\left(\frac{1}{u - 1} - \frac{1}{u}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{u} d u} + \int{\frac{1}{u - 1} d u}\right)}}$$

Let $$$v=u - 1$$$.

Then $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (steps can be seen »), and we have that $$$du = dv$$$.

Therefore,

$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{u - 1} d u}}} = - \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}}$$

The integral of $$$\frac{1}{v}$$$ is $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{u} d u} + {\color{red}{\int{\frac{1}{v} d v}}} = - \int{\frac{1}{u} d u} + {\color{red}{\ln{\left(\left|{v}\right| \right)}}}$$

Recall that $$$v=u - 1$$$:

$$\ln{\left(\left|{{\color{red}{v}}}\right| \right)} - \int{\frac{1}{u} d u} = \ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)} - \int{\frac{1}{u} d u}$$

The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = \ln{\left(\left|{u - 1}\right| \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Recall that $$$u=e^{x}$$$:

$$\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)} - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = \ln{\left(\left|{-1 + {\color{red}{e^{x}}}}\right| \right)} - \ln{\left(\left|{{\color{red}{e^{x}}}}\right| \right)}$$

Therefore,

$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}$$

Add the constant of integration:

$$\int{\frac{1}{e^{x} - 1} d x} = - x + \ln{\left(\left|{e^{x} - 1}\right| \right)}+C$$

Answer

$$$\int \frac{1}{e^{x} - 1}\, dx = \left(- x + \ln\left(\left|{e^{x} - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly