Integral of $$$\left(1 - x\right)^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(1 - x\right)^{2}\, dx$$$.
Solution
Let $$$u=1 - x$$$.
Then $$$du=\left(1 - x\right)^{\prime }dx = - dx$$$ (steps can be seen »), and we have that $$$dx = - du$$$.
So,
$${\color{red}{\int{\left(1 - x\right)^{2} d x}}} = {\color{red}{\int{\left(- u^{2}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = u^{2}$$$:
$${\color{red}{\int{\left(- u^{2}\right)d u}}} = {\color{red}{\left(- \int{u^{2} d u}\right)}}$$
Apply the power rule $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- {\color{red}{\int{u^{2} d u}}}=- {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Recall that $$$u=1 - x$$$:
$$- \frac{{\color{red}{u}}^{3}}{3} = - \frac{{\color{red}{\left(1 - x\right)}}^{3}}{3}$$
Therefore,
$$\int{\left(1 - x\right)^{2} d x} = - \frac{\left(1 - x\right)^{3}}{3}$$
Simplify:
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}$$
Add the constant of integration:
$$\int{\left(1 - x\right)^{2} d x} = \frac{\left(x - 1\right)^{3}}{3}+C$$
Answer
$$$\int \left(1 - x\right)^{2}\, dx = \frac{\left(x - 1\right)^{3}}{3} + C$$$A