Second Derivative Calculator

Calculate second derivatives step by step

This calculator will find the second derivative of any function, with steps shown. Also, it will evaluate the second derivative at the given point if needed.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(5 x \right)}\right)$$$.

Solution

Find the first derivative $$$\frac{d}{dx} \left(\sin{\left(5 x \right)}\right)$$$

The function $$$\sin{\left(5 x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ and $$$g{\left(x \right)} = 5 x$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(5 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(5 x\right)\right)}$$

The derivative of the sine is $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(5 x\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(5 x\right)$$

Return to the old variable:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(5 x\right) = \cos{\left({\color{red}\left(5 x\right)} \right)} \frac{d}{dx} \left(5 x\right)$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 5$$$ and $$$f{\left(x \right)} = x$$$:

$$\cos{\left(5 x \right)} {\color{red}\left(\frac{d}{dx} \left(5 x\right)\right)} = \cos{\left(5 x \right)} {\color{red}\left(5 \frac{d}{dx} \left(x\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$5 \cos{\left(5 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 5 \cos{\left(5 x \right)} {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{dx} \left(\sin{\left(5 x \right)}\right) = 5 \cos{\left(5 x \right)}$$$.

Next, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(5 x \right)}\right) = \frac{d}{dx} \left(5 \cos{\left(5 x \right)}\right)$$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 5$$$ and $$$f{\left(x \right)} = \cos{\left(5 x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(5 \cos{\left(5 x \right)}\right)\right)} = {\color{red}\left(5 \frac{d}{dx} \left(\cos{\left(5 x \right)}\right)\right)}$$

The function $$$\cos{\left(5 x \right)}$$$ is the composition $$$f{\left(g{\left(x \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ and $$$g{\left(x \right)} = 5 x$$$.

Apply the chain rule $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$5 {\color{red}\left(\frac{d}{dx} \left(\cos{\left(5 x \right)}\right)\right)} = 5 {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dx} \left(5 x\right)\right)}$$

The derivative of the cosine is $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:

$$5 {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dx} \left(5 x\right) = 5 {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dx} \left(5 x\right)$$

Return to the old variable:

$$- 5 \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(5 x\right) = - 5 \sin{\left({\color{red}\left(5 x\right)} \right)} \frac{d}{dx} \left(5 x\right)$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 5$$$ and $$$f{\left(x \right)} = x$$$:

$$- 5 \sin{\left(5 x \right)} {\color{red}\left(\frac{d}{dx} \left(5 x\right)\right)} = - 5 \sin{\left(5 x \right)} {\color{red}\left(5 \frac{d}{dx} \left(x\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 25 \sin{\left(5 x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 25 \sin{\left(5 x \right)} {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{dx} \left(5 \cos{\left(5 x \right)}\right) = - 25 \sin{\left(5 x \right)}$$$.

Therefore, $$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(5 x \right)}\right) = - 25 \sin{\left(5 x \right)}$$$.

Answer

$$$\frac{d^{2}}{dx^{2}} \left(\sin{\left(5 x \right)}\right) = - 25 \sin{\left(5 x \right)}$$$A