Operations on Functions Calculator

The calculator will add, subract, multiply, and divide two functions $$$f(x)$$$ and $$$g(x)$$$, with steps shown. It will also evaluate the resulting functions at the specified point if needed.

Related calculator: Composite Function Calculator

Optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Find the sum, difference, product, and quotient of $$$f{\left(x \right)} = 2 x - 1$$$ and $$$g{\left(x \right)} = 3 x + 5$$$.

Solution

$$$\left(f + g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} + {\color{red}\left(3 x + 5\right)} = 5 x + 4$$$

$$$\left(f - g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} - {\color{red}\left(3 x + 5\right)} = - x - 6$$$

$$$\left(f\cdot g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)}\cdot {\color{red}\left(3 x + 5\right)} = \left(2 x - 1\right) \left(3 x + 5\right)$$$

$$$\left(\frac{f}{g}\right)\left(x\right) = \frac{{\color{red}\left(2 x - 1\right)}}{{\color{red}\left(3 x + 5\right)}} = \frac{2 x - 1}{3 x + 5}$$$

Answer

$$$\left(f + g\right)\left(x\right) = 5 x + 4$$$A

$$$\left(f - g\right)\left(x\right) = - x - 6$$$A

$$$\left(f\cdot g\right)\left(x\right) = \left(2 x - 1\right) \left(3 x + 5\right)$$$A

$$$\left(\frac{f}{g}\right)\left(x\right) = \frac{2 x - 1}{3 x + 5}$$$A