Properties of the hyperbola $$$- 25 x^{2} + 4 y^{2} = 100$$$
Related calculators: Parabola Calculator, Circle Calculator, Ellipse Calculator, Conic Section Calculator
Your Input
Find the center, foci, vertices, co-vertices, major axis length, semi-major axis length, minor axis length, semi-minor axis length, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, asymptotes, x-intercepts, y-intercepts, domain, and range of the hyperbola $$$- 25 x^{2} + 4 y^{2} = 100$$$.
Solution
The equation of a hyperbola is $$$\frac{\left(y - k\right)^{2}}{b^{2}} - \frac{\left(x - h\right)^{2}}{a^{2}} = 1$$$, where $$$\left(h, k\right)$$$ is the center, $$$a$$$ and $$$b$$$ are the lengths of the semi-major and the semi-minor axes.
Our hyperbola in this form is $$$\frac{\left(y - 0\right)^{2}}{25} - \frac{\left(x - 0\right)^{2}}{4} = 1$$$.
Thus, $$$h = 0$$$, $$$k = 0$$$, $$$a = 2$$$, $$$b = 5$$$.
The standard form is $$$\frac{y^{2}}{5^{2}} - \frac{x^{2}}{2^{2}} = 1$$$.
The vertex form is $$$\frac{y^{2}}{25} - \frac{x^{2}}{4} = 1$$$.
The general form is $$$25 x^{2} - 4 y^{2} + 100 = 0$$$.
The linear eccentricity (focal distance) is $$$c = \sqrt{b^{2} + a^{2}} = \sqrt{29}$$$.
The eccentricity is $$$e = \frac{c}{b} = \frac{\sqrt{29}}{5}$$$.
The first focus is $$$\left(h, k - c\right) = \left(0, - \sqrt{29}\right)$$$.
The second focus is $$$\left(h, k + c\right) = \left(0, \sqrt{29}\right)$$$.
The first vertex is $$$\left(h, k - b\right) = \left(0, -5\right)$$$.
The second vertex is $$$\left(h, k + b\right) = \left(0, 5\right)$$$.
The first co-vertex is $$$\left(h - a, k\right) = \left(-2, 0\right)$$$.
The second co-vertex is $$$\left(h + a, k\right) = \left(2, 0\right)$$$.
The length of the major axis is $$$2 b = 10$$$.
The length of the minor axis is $$$2 a = 4$$$.
The focal parameter is the distance between the focus and the directrix: $$$\frac{a^{2}}{c} = \frac{4 \sqrt{29}}{29}$$$.
The latera recta are the lines parallel to the minor axis that pass through the foci.
The first latus rectum is $$$y = - \sqrt{29}$$$.
The second latus rectum is $$$y = \sqrt{29}$$$.
The endpoints of the first latus rectum can be found by solving the system $$$\begin{cases} 25 x^{2} - 4 y^{2} + 100 = 0 \\ y = - \sqrt{29} \end{cases}$$$ (for steps, see system of equations calculator).
The endpoints of the first latus rectum are $$$\left(- \frac{4}{5}, - \sqrt{29}\right)$$$, $$$\left(\frac{4}{5}, - \sqrt{29}\right)$$$.
The endpoints of the second latus rectum can be found by solving the system $$$\begin{cases} 25 x^{2} - 4 y^{2} + 100 = 0 \\ y = \sqrt{29} \end{cases}$$$ (for steps, see system of equations calculator).
The endpoints of the second latus rectum are $$$\left(- \frac{4}{5}, \sqrt{29}\right)$$$, $$$\left(\frac{4}{5}, \sqrt{29}\right)$$$.
The length of the latera recta (focal width) is $$$\frac{2 a^{2}}{b} = \frac{8}{5}$$$.
The first directrix is $$$y = k - \frac{b^{2}}{c} = - \frac{25 \sqrt{29}}{29}$$$.
The second directrix is $$$y = k + \frac{b^{2}}{c} = \frac{25 \sqrt{29}}{29}$$$.
The first asymptote is $$$y = - \frac{b}{a} \left(x - h\right) + k = - \frac{5 x}{2}$$$.
The second asymptote is $$$y = \frac{b}{a} \left(x - h\right) + k = \frac{5 x}{2}$$$.
The x-intercepts can be found by setting $$$y = 0$$$ in the equation and solving for $$$x$$$ (for steps, see intercepts calculator).
Since there are no real solutions, there are no x-intercepts.
The y-intercepts can be found by setting $$$x = 0$$$ in the equation and solving for $$$y$$$: (for steps, see intercepts calculator).
y-intercepts: $$$\left(0, -5\right)$$$, $$$\left(0, 5\right)$$$
Answer
Standard form/equation: $$$\frac{y^{2}}{5^{2}} - \frac{x^{2}}{2^{2}} = 1$$$A.
Vertex form/equation: $$$\frac{y^{2}}{25} - \frac{x^{2}}{4} = 1$$$A.
General form/equation: $$$25 x^{2} - 4 y^{2} + 100 = 0$$$A.
First focus-directrix form/equation: $$$x^{2} + \left(y + \sqrt{29}\right)^{2} = \frac{29 \left(y + \frac{25 \sqrt{29}}{29}\right)^{2}}{25}$$$A.
Second focus-directrix form/equation: $$$x^{2} + \left(y - \sqrt{29}\right)^{2} = \frac{29 \left(y - \frac{25 \sqrt{29}}{29}\right)^{2}}{25}$$$A.
Graph: see the graphing calculator.
Center: $$$\left(0, 0\right)$$$A.
First focus: $$$\left(0, - \sqrt{29}\right)\approx \left(0, -5.385164807134504\right)$$$A.
Second focus: $$$\left(0, \sqrt{29}\right)\approx \left(0, 5.385164807134504\right)$$$A.
First vertex: $$$\left(0, -5\right)$$$A.
Second vertex: $$$\left(0, 5\right)$$$A.
First co-vertex: $$$\left(-2, 0\right)$$$A.
Second co-vertex: $$$\left(2, 0\right)$$$A.
Major (transverse) axis length: $$$10$$$A.
Semi-major axis length: $$$5$$$A.
Minor (conjugate) axis length: $$$4$$$A.
Semi-minor axis length: $$$2$$$A.
First latus rectum: $$$y = - \sqrt{29}\approx -5.385164807134504$$$A.
Second latus rectum: $$$y = \sqrt{29}\approx 5.385164807134504$$$A.
Endpoints of the first latus rectum: $$$\left(- \frac{4}{5}, - \sqrt{29}\right)\approx \left(-0.8, -5.385164807134504\right)$$$, $$$\left(\frac{4}{5}, - \sqrt{29}\right)\approx \left(0.8, -5.385164807134504\right)$$$A.
Endpoints of the second latus rectum: $$$\left(- \frac{4}{5}, \sqrt{29}\right)\approx \left(-0.8, 5.385164807134504\right)$$$, $$$\left(\frac{4}{5}, \sqrt{29}\right)\approx \left(0.8, 5.385164807134504\right)$$$A.
Length of the latera recta (focal width): $$$\frac{8}{5} = 1.6$$$A.
Focal parameter: $$$\frac{4 \sqrt{29}}{29}\approx 0.742781352708207$$$A.
Eccentricity: $$$\frac{\sqrt{29}}{5}\approx 1.077032961426901$$$A.
Linear eccentricity (focal distance): $$$\sqrt{29}\approx 5.385164807134504$$$A.
First directrix: $$$y = - \frac{25 \sqrt{29}}{29}\approx -4.642383454426297$$$A.
Second directrix: $$$y = \frac{25 \sqrt{29}}{29}\approx 4.642383454426297$$$A.
First asymptote: $$$y = - \frac{5 x}{2} = - 2.5 x$$$A.
Second asymptote: $$$y = \frac{5 x}{2} = 2.5 x$$$A.
x-intercepts: no x-intercepts.
y-intercepts: $$$\left(0, -5\right)$$$, $$$\left(0, 5\right)$$$A.
Domain: $$$\left(-\infty, \infty\right)$$$A.
Range: $$$\left(-\infty, -5\right] \cup \left[5, \infty\right)$$$A.