Resolver $$$\cos{\left(2 x \right)} = 0$$$ para $$$x$$$

La calculadora intentará resolver la ecuación $$$\cos{\left(2 x \right)} = 0$$$ para $$$x$$$ (encontrar las raíces reales y complejas).
Deje vacío para la detección automática.
Opcional.
Si se especifica el intervalo, la casilla de verificación se marcará automáticamente.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Resuelve la ecuación $$$\cos{\left(2 x \right)} = 0$$$ para $$$x$$$.

Respuesta

raíces reales

$$$x\in\left\{\pi \left(n - \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n - 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$

$$$x\in\left\{\pi \left(n + \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n + 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$

Raíces complejas

Parece que no hay raíces complejas.