Resolver $$$\cos{\left(2 x \right)} = 0$$$ para $$$x$$$
Tu aportación
Resuelve la ecuación $$$\cos{\left(2 x \right)} = 0$$$ para $$$x$$$.
Respuesta
raíces reales
$$$x\in\left\{\pi \left(n - \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n - 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$
$$$x\in\left\{\pi \left(n + \frac{1}{4}\right)\; \middle|\; n \in \mathbb{Z}\right\}\approx \left\{3.141592653589793 n + 0.785398163397448\; \middle|\; n \in \mathbb{Z}\right\}$$$
Raíces complejas
Parece que no hay raíces complejas.