線性代數計算器

逐步求解線性代數問題

此計算器可求解線性代數問題。它用於回答與向量與矩陣相關的問題。
找不到您需要的計算器嗎? 提出請求
永久連結: 奇異值分解計算器
$$$\times$$$
A

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]$$$的奇異值分解。

解答

求矩陣的轉置:$$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T} = \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]$$$(步驟請參見 矩陣轉置計算器)。

將矩陣與其轉置相乘:$$$W = \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right] = \left[\begin{array}{cc}2 & 1\\1 & 1\end{array}\right]$$$ (步驟請見 矩陣乘法計算器).

現在,求出 $$$W$$$ 的特徵值與特徵向量(步驟請參見 特徵值與特徵向量計算器)。

特徵值:$$$- \frac{-3 + \sqrt{5}}{2}$$$,特徵向量:$$$\left[\begin{array}{c}- \frac{-1 + \sqrt{5}}{2}\\1\end{array}\right]$$$

特徵值:$$$\frac{\sqrt{5} + 3}{2}$$$,特徵向量:$$$\left[\begin{array}{c}\frac{1 + \sqrt{5}}{2}\\1\end{array}\right]$$$

求非零特徵值($$$\sigma_{i}$$$)的平方根:

$$$\sigma_{1} = \frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}$$$

$$$\sigma_{2} = \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}$$$

矩陣 $$$\Sigma$$$ 是一個對角線元素為 $$$\sigma_{i}$$$、其餘元素皆為 0 的矩陣:$$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right]$$$

矩陣 $$$U$$$ 的各列是歸一化(單位)向量:$$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]$$$(關於求單位向量的步驟,請參見 unit vector calculator)。

現在,$$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{i}$$$

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{1} = \frac{1}{\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}}\end{array}\right] = \left[\begin{array}{c}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}}\end{array}\right]$$$(步驟詳見 矩陣標量乘法計算器矩陣乘法計算器)。

$$$v_{2} = \frac{1}{\sigma_{2}}\cdot \left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right]^{T}\cdot u_{2} = \frac{1}{\frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}}\cdot \left[\begin{array}{cc}1 & 0\\1 & 1\end{array}\right]\cdot \left[\begin{array}{c}\frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right] = \left[\begin{array}{c}\frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]$$$(步驟詳見 矩陣標量乘法計算器矩陣乘法計算器)。

因此,$$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]$$$

矩陣 $$$U$$$$$$\Sigma$$$$$$V$$$ 使得初始矩陣滿足 $$$\left[\begin{array}{cc}1 & 1\\0 & 1\end{array}\right] = U \Sigma V^T$$$

答案

$$$U = \left[\begin{array}{cc}\frac{- \sqrt{10} + \sqrt{2}}{2 \sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2} + \sqrt{10}}{2 \sqrt{\sqrt{5} + 5}}\\\frac{\sqrt{2}}{\sqrt{5 - \sqrt{5}}} & \frac{\sqrt{2}}{\sqrt{\sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.525731112119134 & 0.85065080835204\\0.85065080835204 & 0.525731112119134\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{cc}\frac{\sqrt{2} \sqrt{3 - \sqrt{5}}}{2} & 0\\0 & \frac{\sqrt{2} \sqrt{\sqrt{5} + 3}}{2}\end{array}\right]\approx \left[\begin{array}{cc}0.618033988749895 & 0\\0 & 1.618033988749895\end{array}\right]$$$A

$$$V = \left[\begin{array}{cc}\frac{1 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{1 + \sqrt{5}}{2 \sqrt{2 \sqrt{5} + 5}}\\\frac{3 - \sqrt{5}}{2 \sqrt{5 - 2 \sqrt{5}}} & \frac{\sqrt{5} + 3}{2 \sqrt{2 \sqrt{5} + 5}}\end{array}\right]\approx \left[\begin{array}{cc}-0.85065080835204 & 0.525731112119134\\0.525731112119134 & 0.85065080835204\end{array}\right]$$$A


Please try a new game Rotatly