對於參數為 $$$n = 2$$$ 和 $$$p = 0.09$$$ 的二項分佈,求 $$$P{\left(X = 1 \right)}$$$
您的輸入
使用 $$$n = 2$$$、$$$p = 0.09 = \frac{9}{100}$$$ 與 $$$x = 1$$$ 計算二項分配的各種數值。
答案
平均值:$$$\mu = n p = \left(2\right)\cdot \left(\frac{9}{100}\right) = \frac{9}{50} = 0.18$$$A。
方差:$$$\sigma^{2} = n p \left(1 - p\right) = \left(2\right)\cdot \left(\frac{9}{100}\right)\cdot \left(1 - \frac{9}{100}\right) = \frac{819}{5000} = 0.1638$$$A。
標準差:$$$\sigma = \sqrt{n p \left(1 - p\right)} = \sqrt{\left(2\right)\cdot \left(\frac{9}{100}\right)\cdot \left(1 - \frac{9}{100}\right)} = \frac{3 \sqrt{182}}{100}\approx 0.404722126896961$$$A。
$$$P{\left(X = 1 \right)} = 0.1638$$$A
$$$P{\left(X \lt 1 \right)} = 0.8281$$$A
$$$P{\left(X \leq 1 \right)} = 0.9919$$$A
$$$P{\left(X \gt 1 \right)} = 0.0081$$$A
$$$P{\left(X \geq 1 \right)} = 0.1719$$$A
Please try a new game Rotatly