$$$\left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$的模
您的輸入
求$$$\mathbf{\vec{u}} = \left\langle 3 \sqrt{6} t^{2}, - 6 t, \sqrt{6}\right\rangle$$$的模(長度)。
解答
向量的模由公式 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ 給出。
各座標的絕對值平方和為 $$$\left|{3 \sqrt{6} t^{2}}\right|^{2} + \left|{- 6 t}\right|^{2} + \left|{\sqrt{6}}\right|^{2} = 54 t^{4} + 36 t^{2} + 6$$$。
因此,向量的大小為 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{54 t^{4} + 36 t^{2} + 6} = \sqrt{6} \left(3 t^{2} + 1\right)$$$。
答案
大小為 $$$\sqrt{6} \left(3 t^{2} + 1\right)\approx 7.348469228349534 t^{2} + 2.449489742783178$$$A。
Please try a new game Rotatly