$$$\left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$的模
您的輸入
求$$$\mathbf{\vec{u}} = \left\langle 3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}, - 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}, \sin{\left(2 t \right)}\right\rangle$$$的模(長度)。
解答
向量的模由公式 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{\sum_{i=1}^{n} \left|{u_{i}}\right|^{2}}$$$ 給出。
各座標的絕對值平方和為 $$$\left|{3 \sin^{2}{\left(t \right)} \cos{\left(t \right)}}\right|^{2} + \left|{- 3 \sin{\left(t \right)} \cos^{2}{\left(t \right)}}\right|^{2} + \left|{\sin{\left(2 t \right)}}\right|^{2} = 9 \sin^{4}{\left(t \right)} \cos^{2}{\left(t \right)} + 9 \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} + \sin^{2}{\left(2 t \right)}$$$。
因此,向量的大小為 $$$\mathbf{\left\lvert\vec{u}\right\rvert} = \sqrt{9 \sin^{4}{\left(t \right)} \cos^{2}{\left(t \right)} + 9 \sin^{2}{\left(t \right)} \cos^{4}{\left(t \right)} + \sin^{2}{\left(2 t \right)}} = \frac{\sqrt{26 - 26 \cos{\left(4 t \right)}}}{4}$$$。
答案
大小為 $$$\frac{\sqrt{26 - 26 \cos{\left(4 t \right)}}}{4} = 0.25 \left(26 - 26 \cos{\left(4 t \right)}\right)^{0.5}$$$A。