$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]$$$ 的奇異值分解

此計算器將求出$$$2$$$x$$$2$$$矩陣$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]$$$的奇異值分解,並顯示步驟。

相關計算器: 偽逆計算器

$$$\times$$$
A

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]$$$的奇異值分解。

解答

求矩陣的轉置:$$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T} = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right]$$$(步驟請參見 矩陣轉置計算器)。

將矩陣與其轉置相乘:$$$W = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right] = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$ (步驟請見 矩陣乘法計算器).

現在,求出 $$$W$$$ 的特徵值與特徵向量(步驟請參見 特徵值與特徵向量計算器)。

特徵值:$$$1$$$,特徵向量:$$$\left[\begin{array}{c}1\\0\end{array}\right]$$$

特徵值:$$$0$$$,特徵向量:$$$\left[\begin{array}{c}0\\1\end{array}\right]$$$

求非零特徵值($$$\sigma_{i}$$$)的平方根:

$$$\sigma_{1} = 1$$$

矩陣 $$$\Sigma$$$ 是一個對角線元素為 $$$\sigma_{i}$$$、其餘元素皆為 0 的矩陣:$$$\Sigma = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$

矩陣 $$$U$$$ 的各列是歸一化(單位)向量:$$$U = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$(關於求單位向量的步驟,請參見 unit vector calculator)。

現在,$$$v_{i} = \frac{1}{\sigma_{i}}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T}\cdot u_{i}$$$

$$$v_{1} = \frac{1}{\sigma_{1}}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right]^{T}\cdot u_{1} = \frac{1}{1}\cdot \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & 0\\\frac{\sqrt{2}}{2} & 0\end{array}\right]\cdot \left[\begin{array}{c}1\\0\end{array}\right] = \left[\begin{array}{c}\frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right]$$$(步驟詳見 矩陣標量乘法計算器矩陣乘法計算器)。

由於非零 $$$\sigma_{i}$$$ 已用盡且仍需再找一個向量,請透過求以已找到的向量為行所組成之矩陣的零空間,找出與所有已找到向量正交的向量:$$$\left[\begin{array}{c}-1\\1\end{array}\right]$$$(步驟請參見 null space calculator)。

將向量單位化:它變為 $$$\left[\begin{array}{c}- \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\end{array}\right]$$$,(步驟請參見 單位向量計算器)。

因此,$$$V = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]$$$

矩陣 $$$U$$$$$$\Sigma$$$$$$V$$$ 使得初始矩陣滿足 $$$\left[\begin{array}{cc}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\\0 & 0\end{array}\right] = U \Sigma V^T$$$

答案

$$$U = \left[\begin{array}{cc}1 & 0\\0 & 1\end{array}\right]$$$A

$$$\Sigma = \left[\begin{array}{cc}1 & 0\\0 & 0\end{array}\right]$$$A

$$$V = \left[\begin{array}{cc}\frac{\sqrt{2}}{2} & - \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right]\approx \left[\begin{array}{cc}0.707106781186548 & -0.707106781186548\\0.707106781186548 & 0.707106781186548\end{array}\right]$$$A


Please try a new game Rotatly