化簡 $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$

此計算器將簡化布林運算式 $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$,並顯示步驟。

相關計算器: 真值表計算器

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

化簡布林運算式 $$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}$$$

解答

將德摩根定律 $$$\overline{x \cdot y} = \overline{x} + \overline{y}$$$ 應用於 $$$x = \overline{A} + B$$$$$$y = \overline{B} + C$$$

$${\color{red}\left(\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)}\right)} = {\color{red}\left(\overline{\overline{A} + B} + \overline{\overline{B} + C}\right)}$$

將德摩根定律 $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ 應用於 $$$x = \overline{A}$$$$$$y = B$$$

$${\color{red}\left(\overline{\overline{A} + B}\right)} + \overline{\overline{B} + C} = {\color{red}\left(\overline{\overline{A}} \cdot \overline{B}\right)} + \overline{\overline{B} + C}$$

$$$x = A$$$ 套用雙重否定(對合)律 $$$\overline{\overline{x}} = x$$$

$$\left({\color{red}\left(\overline{\overline{A}}\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C} = \left({\color{red}\left(A\right)} \cdot \overline{B}\right) + \overline{\overline{B} + C}$$

將德摩根定律 $$$\overline{x + y} = \overline{x} \cdot \overline{y}$$$ 應用於 $$$x = \overline{B}$$$$$$y = C$$$

$$\left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B} + C}\right)} = \left(A \cdot \overline{B}\right) + {\color{red}\left(\overline{\overline{B}} \cdot \overline{C}\right)}$$

$$$x = B$$$ 套用雙重否定(對合)律 $$$\overline{\overline{x}} = x$$$

$$\left(A \cdot \overline{B}\right) + \left({\color{red}\left(\overline{\overline{B}}\right)} \cdot \overline{C}\right) = \left(A \cdot \overline{B}\right) + \left({\color{red}\left(B\right)} \cdot \overline{C}\right)$$

答案

$$$\overline{\left(\overline{A} + B\right) \cdot \left(\overline{B} + C\right)} = \left(A \cdot \overline{B}\right) + \left(B \cdot \overline{C}\right)$$$


Please try a new game Rotatly