化簡 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$

此計算器將簡化布林運算式 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$,並顯示步驟。

相關計算器: 真值表計算器

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

化簡布林運算式 $$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right)$$$

解答

套用否定律 $$$\overline{0} = 1$$$

$$\left(\left(1 \cdot 0\right) + {\color{red}\left(\overline{0}\right)}\right) \cdot \left(\overline{1} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + {\color{red}\left(1\right)}\right) \cdot \left(\overline{1} + 0 + 1\right)$$

套用否定律 $$$\overline{1} = 0$$$

$$\left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(\overline{1}\right)} + 0 + 1\right) = \left(\left(1 \cdot 0\right) + 1\right) \cdot \left({\color{red}\left(0\right)} + 0 + 1\right)$$

$$$x = 1 \cdot 0$$$ 應用支配(零、歸零)律 $$$x + 1 = 1$$$

$${\color{red}\left(\left(1 \cdot 0\right) + 1\right)} \cdot \left(0 + 0 + 1\right) = {\color{red}\left(1\right)} \cdot \left(0 + 0 + 1\right)$$

$$$x = 0$$$ 應用支配(零、歸零)律 $$$x + 1 = 1$$$

$$1 \cdot \left(0 + {\color{red}\left(0 + 1\right)}\right) = 1 \cdot \left(0 + {\color{red}\left(1\right)}\right)$$

$$$x = 0$$$ 應用支配(零、歸零)律 $$$x + 1 = 1$$$

$$1 \cdot {\color{red}\left(0 + 1\right)} = 1 \cdot {\color{red}\left(1\right)}$$

將恆等律 $$$x \cdot 1 = x$$$ 應用於 $$$x = 1$$$

$${\color{red}\left(1 \cdot 1\right)} = {\color{red}\left(1\right)}$$

答案

$$$\left(\left(1 \cdot 0\right) + \overline{0}\right) \cdot \left(\overline{1} + 0 + 1\right) = 1$$$

DNF 為 $$$\text{True}$$$

合取範式為 $$$\text{True}$$$

NNF 為 $$$\text{True}$$$


Please try a new game Rotatly