$$$t$$$, $$$3 t - 1$$$ 的朗斯基行列式
您的輸入
計算$$$\left\{f_{1} = t, f_{2} = 3 t - 1\right\}$$$的朗斯基行列式。
解答
朗斯基行列式由以下行列式給出:$$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}f_{1}\left(t\right) & f_{2}\left(t\right)\\f_{1}^{\prime}\left(t\right) & f_{2}^{\prime}\left(t\right)\end{array}\right|$$$。
在本例中,$$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}t & 3 t - 1\\\left(t\right)^{\prime } & \left(3 t - 1\right)^{\prime }\end{array}\right|$$$。
求導數(步驟見 導數計算器):$$$W{\left(f_{1},f_{2} \right)}\left(t\right) = \left|\begin{array}{cc}t & 3 t - 1\\1 & 3\end{array}\right|$$$
求行列式的值(步驟請參見行列式計算器):$$$\left|\begin{array}{cc}t & 3 t - 1\\1 & 3\end{array}\right| = 1$$$。
答案
朗斯基行列式等於 $$$1$$$A。
Please try a new game Rotatly