$$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$ 的單位切向量
您的輸入
求 $$$\mathbf{\vec{r}\left(t\right)} = \left\langle \sin{\left(t \right)}, \cos{\left(t \right)}, 2 \sqrt{2} t\right\rangle$$$ 的單位切向量。
解答
要找出單位切向量,我們需要先求 $$$\mathbf{\vec{r}\left(t\right)}$$$ 的導數(切向量),然後將其歸一化(求單位向量)。
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle \cos{\left(t \right)}, - \sin{\left(t \right)}, 2 \sqrt{2}\right\rangle$$$(步驟詳見導數計算器)。
求$$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\cos{\left(t \right)}}{3}, - \frac{\sin{\left(t \right)}}{3}, \frac{2 \sqrt{2}}{3}\right\rangle$$$的單位向量(步驟請參閱單位向量計算器)。
答案
單位切向量為 $$$\mathbf{\vec{T}\left(t\right)} = \left\langle \frac{\cos{\left(t \right)}}{3}, - \frac{\sin{\left(t \right)}}{3}, \frac{2 \sqrt{2}}{3}\right\rangle$$$A。
Please try a new game Rotatly