偏導數計算器
逐步計算偏導數
此線上計算器可計算函數的偏導數,並顯示步驟。您可以指定任意的積分順序。
Solution
Your input: find $$$\frac{\partial}{\partial y}\left(4 x + y\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial y}\left(4 x + y\right)}}={\color{red}{\left(\frac{\partial}{\partial y}\left(4 x\right) + \frac{\partial}{\partial y}\left(y\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial y}\left(4 x\right)}} + \frac{\partial}{\partial y}\left(y\right)={\color{red}{\left(0\right)}} + \frac{\partial}{\partial y}\left(y\right)$$Apply the power rule $$$\frac{\partial}{\partial y} \left(y^{n} \right)=n\cdot y^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial y} \left(y \right)=1$$$:
$${\color{red}{\frac{\partial}{\partial y}\left(y\right)}}={\color{red}{1}}$$Thus, $$$\frac{\partial}{\partial y}\left(4 x + y\right)=1$$$
Answer: $$$\frac{\partial}{\partial y}\left(4 x + y\right)=1$$$
Please try a new game Rotatly