$$$\pi$$$ 的二階導數
您的輸入
求$$$\frac{d^{2}}{d\pi^{2}} \left(\pi\right)$$$。
解答
求第一階導數 $$$\frac{d}{d\pi} \left(\pi\right)$$$
套用冪次法則 $$$\frac{d}{d\pi} \left(\pi^{n}\right) = n \pi^{n - 1}$$$,取 $$$n = 1$$$,也就是 $$$\frac{d}{d\pi} \left(\pi\right) = 1$$$:
$${\color{red}\left(\frac{d}{d\pi} \left(\pi\right)\right)} = {\color{red}\left(1\right)}$$因此,$$$\frac{d}{d\pi} \left(\pi\right) = 1$$$。
接下來,$$$\frac{d^{2}}{d\pi^{2}} \left(\pi\right) = \frac{d}{d\pi} \left(1\right)$$$
常數的導數為$$$0$$$:
$${\color{red}\left(\frac{d}{d\pi} \left(1\right)\right)} = {\color{red}\left(0\right)}$$因此,$$$\frac{d}{d\pi} \left(1\right) = 0$$$。
因此,$$$\frac{d^{2}}{d\pi^{2}} \left(\pi\right) = 0$$$。
答案
$$$\frac{d^{2}}{d\pi^{2}} \left(\pi\right) = 0$$$A
Please try a new game Rotatly