$$$- \frac{5228171817}{100000000} - i$$$ 的極座標形式
您的輸入
求$$$- \frac{5228171817}{100000000} - i$$$的極座標形式。
解答
該複數的標準形式為 $$$- \frac{5228171817}{100000000} - i$$$。
對於複數 $$$a + b i$$$,其極座標形式表示為 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$,其中 $$$r = \sqrt{a^{2} + b^{2}}$$$ 和 $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$。
我們有 $$$a = - \frac{5228171817}{100000000}$$$ 與 $$$b = -1$$$。
因此,$$$r = \sqrt{\left(- \frac{5228171817}{100000000}\right)^{2} + \left(-1\right)^{2}} = \frac{\sqrt{27343780548073081489}}{100000000}$$$。
此外,$$$\theta = \operatorname{atan}{\left(\frac{-1}{- \frac{5228171817}{100000000}} \right)} - \pi = - \pi + \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)}$$$。
因此,$$$- \frac{5228171817}{100000000} - i = \frac{\sqrt{27343780548073081489}}{100000000} \left(\cos{\left(- \pi + \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)} \right)} + i \sin{\left(- \pi + \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)} \right)}\right)$$$。
答案
$$$- \frac{5228171817}{100000000} - i = \frac{\sqrt{27343780548073081489}}{100000000} \left(\cos{\left(- \pi + \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)} \right)} + i \sin{\left(- \pi + \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)} \right)}\right) = \frac{\sqrt{27343780548073081489}}{100000000} \left(\cos{\left(\left(\frac{- 180 \pi + 180 \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)}}{\pi}\right)^{\circ} \right)} + i \sin{\left(\left(\frac{- 180 \pi + 180 \operatorname{atan}{\left(\frac{100000000}{5228171817} \right)}}{\pi}\right)^{\circ} \right)}\right)$$$A