$$$\sqrt[3]{i}$$$

此計算器會求出複數 $$$i$$$ 的所有第 $$$n$$$ 次方根($$$n = 3$$$),並顯示步驟。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\sqrt[3]{i}$$$

解答

$$$i$$$ 的極座標形式為 $$$\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}$$$(步驟請參見 極座標形式計算器)。

根據棣莫弗公式,複數 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ 的所有第 $$$n$$$ 次方根由 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ 給出。

我們有 $$$r = 1$$$$$$\theta = \frac{\pi}{2}$$$$$$n = 3$$$

  • $$$k = 0$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 0}{3} \right)}\right) = \cos{\left(\frac{\pi}{6} \right)} + i \sin{\left(\frac{\pi}{6} \right)} = \frac{\sqrt{3}}{2} + \frac{i}{2}$$$
  • $$$k = 1$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 1}{3} \right)}\right) = \cos{\left(\frac{5 \pi}{6} \right)} + i \sin{\left(\frac{5 \pi}{6} \right)} = - \frac{\sqrt{3}}{2} + \frac{i}{2}$$$
  • $$$k = 2$$$: $$$\sqrt[3]{1} \left(\cos{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{\frac{\pi}{2} + 2\cdot \pi\cdot 2}{3} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i$$$

答案

$$$\sqrt[3]{i} = \frac{\sqrt{3}}{2} + \frac{i}{2}\approx 0.866025403784439 + 0.5 i$$$A

$$$\sqrt[3]{i} = - \frac{\sqrt{3}}{2} + \frac{i}{2}\approx -0.866025403784439 + 0.5 i$$$A

$$$\sqrt[3]{i} = - i$$$A


Please try a new game Rotatly