$$$\sqrt[3]{8}$$$

此計算器會求出複數 $$$8$$$ 的所有第 $$$n$$$ 次方根($$$n = 3$$$),並顯示步驟。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\sqrt[3]{8}$$$

解答

$$$8$$$ 的極座標形式為 $$$8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right)$$$(步驟請參見 極座標形式計算器)。

根據棣莫弗公式,複數 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ 的所有第 $$$n$$$ 次方根由 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ 給出。

我們有 $$$r = 8$$$$$$\theta = 0$$$$$$n = 3$$$

  • $$$k = 0$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)}\right) = 2 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right) = 2$$$
  • $$$k = 1$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)}\right) = 2 \left(\cos{\left(\frac{2 \pi}{3} \right)} + i \sin{\left(\frac{2 \pi}{3} \right)}\right) = -1 + \sqrt{3} i$$$
  • $$$k = 2$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)}\right) = 2 \left(\cos{\left(\frac{4 \pi}{3} \right)} + i \sin{\left(\frac{4 \pi}{3} \right)}\right) = -1 - \sqrt{3} i$$$

答案

$$$\sqrt[3]{8} = 2$$$A

$$$\sqrt[3]{8} = -1 + \sqrt{3} i\approx -1 + 1.732050807568877 i$$$A

$$$\sqrt[3]{8} = -1 - \sqrt{3} i\approx -1 - 1.732050807568877 i$$$A


Please try a new game Rotatly