求$$$\sqrt[3]{8}$$$
您的輸入
求$$$\sqrt[3]{8}$$$。
解答
$$$8$$$ 的極座標形式為 $$$8 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right)$$$(步驟請參見 極座標形式計算器)。
根據棣莫弗公式,複數 $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$ 的所有第 $$$n$$$ 次方根由 $$$r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right)$$$, $$$k=\overline{0..n-1}$$$ 給出。
我們有 $$$r = 8$$$、$$$\theta = 0$$$ 和 $$$n = 3$$$。
- $$$k = 0$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{3} \right)}\right) = 2 \left(\cos{\left(0 \right)} + i \sin{\left(0 \right)}\right) = 2$$$
- $$$k = 1$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{3} \right)}\right) = 2 \left(\cos{\left(\frac{2 \pi}{3} \right)} + i \sin{\left(\frac{2 \pi}{3} \right)}\right) = -1 + \sqrt{3} i$$$
- $$$k = 2$$$: $$$\sqrt[3]{8} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{3} \right)}\right) = 2 \left(\cos{\left(\frac{4 \pi}{3} \right)} + i \sin{\left(\frac{4 \pi}{3} \right)}\right) = -1 - \sqrt{3} i$$$
答案
$$$\sqrt[3]{8} = 2$$$A
$$$\sqrt[3]{8} = -1 + \sqrt{3} i\approx -1 + 1.732050807568877 i$$$A
$$$\sqrt[3]{8} = -1 - \sqrt{3} i\approx -1 - 1.732050807568877 i$$$A
Please try a new game Rotatly