求解 $$$6 x^{2} - 30 \sqrt{2} x + 67 = 0$$$ 關於 $$$x$$$ (實根)
您的輸入
在區間 $$$\left(-\infty, \infty\right)$$$ 上解方程 $$$6 x^{2} - 30 \sqrt{2} x + 67 = 0$$$,求 $$$x$$$。
答案
實根
$$$x = \frac{- 4 \sqrt{3} + 15 \sqrt{2}}{6}\approx 2.380833367553486$$$A
$$$x = \frac{4 \sqrt{3} + 15 \sqrt{2}}{6}\approx 4.690234444311989$$$A
Please try a new game Rotatly